Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Z Gesundh Wiss ; : 1-14, 2021 May 17.
Article in English | MEDLINE | ID: covidwho-2253140

ABSTRACT

AIM: To use a Delphi-panel-based assessment of the effectiveness of different non-pharmaceutical interventions (NPI) in order to retrospectively approximate and to prospectively predict the SARS-CoV-2 pandemic progression via a SEIR model (susceptible, exposed, infectious, removed). METHODS: We applied an evidence-educated Delphi-panel approach to elicit the impact of NPIs on the SARS-CoV-2 transmission rate R0 in Germany. Effectiveness was defined as the product of efficacy and compliance. A discrete, deterministic SEIR model with time step of 1 day, a latency period of 1.8 days, duration of infectiousness of 5 days, and a share of the total population of 15% assumed to be protected by immunity was developed in order to estimate the impact of selected NPI measures on the course of the pandemic. The model was populated with the Delphi-panel results and varied in sensitivity analyses. RESULTS: Efficacy and compliance estimates for the three most effective NPIs were as follows: test and isolate 49% (efficacy)/78% (compliance), keeping distance 42%/74%, personal protection masks (cloth masks or other face masks) 33%/79%. Applying all NPI effectiveness estimates to the SEIR model resulted in a valid replication of reported occurrence of the German SARS-CoV-2 pandemic. A combination of four NPIs at consented compliance rates might curb the CoViD-19 pandemic. CONCLUSION: Employing an evidence-educated Delphi-panel approach can support SARS-CoV-2 modelling. Future curbing scenarios require a combination of NPIs. A Delphi-panel-based NPI assessment and modelling might support public health policy decision making by informing sequence and number of needed public health measures. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10389-021-01566-2.

2.
Antimicrob Resist Infect Control ; 11(1): 9, 2022 01 17.
Article in English | MEDLINE | ID: covidwho-1629444

ABSTRACT

BACKGROUND: Factors contributing to the spread of SARS-CoV-2 outside the acute care hospital setting have been described in detail. However, data concerning risk factors for nosocomial SARS-CoV-2 infections in hospitalized patients remain scarce. To close this research gap and inform targeted measures for the prevention of nosocomial SARS-CoV-2 infections, we analyzed nosocomial SARS-CoV-2 cases in our hospital during a defined time period. METHODS: Data on nosocomial SARS-CoV-2 infections in hospitalized patients that occurred between May 2020 and January 2021 at Charité university hospital in Berlin, Germany, were retrospectively gathered. A SARS-CoV-2 infection was considered nosocomial if the patient was admitted with a negative SARS-CoV-2 reverse transcription polymerase chain reaction test and subsequently tested positive on day five or later. As the incubation period of SARS-CoV-2 can be longer than five days, we defined a subgroup of "definite" nosocomial SARS-CoV-2 cases, with a negative test on admission and a positive test after day 10, for which we conducted a matched case-control study with a one to one ratio of cases and controls. We employed a multivariable logistic regression model to identify factors significantly increasing the likelihood of nosocomial SARS-CoV-2 infections. RESULTS: A total of 170 patients with a nosocomial SARS-CoV-2 infection were identified. The majority of nosocomial SARS-CoV-2 patients (n = 157, 92%) had been treated at wards that reported an outbreak of nosocomial SARS-CoV-2 cases during their stay or up to 14 days later. For 76 patients with definite nosocomial SARS-CoV-2 infections, controls for the case-control study were matched. For this subgroup, the multivariable logistic regression analysis revealed documented contact to SARS-CoV-2 cases (odds ratio: 23.4 (95% confidence interval: 4.6-117.7)) and presence at a ward that experienced a SARS-CoV-2 outbreak (odds ratio: 15.9 (95% confidence interval: 2.5-100.8)) to be the principal risk factors for nosocomial SARS-CoV-2 infection. CONCLUSIONS: With known contact to SARS-CoV-2 cases and outbreak association revealed as the primary risk factors, our findings confirm known causes of SARS-CoV-2 infections and demonstrate that these also apply to the acute care hospital setting. This underscores the importance of rapidly identifying exposed patients and taking adequate preventive measures.


Subject(s)
COVID-19/epidemiology , Cross Infection/epidemiology , SARS-CoV-2 , Aged , Aged, 80 and over , Case-Control Studies , Female , Germany/epidemiology , Humans , Logistic Models , Male , Middle Aged , Multivariate Analysis , Pandemics , Retrospective Studies , Risk Factors , Tertiary Care Centers
SELECTION OF CITATIONS
SEARCH DETAIL